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ABSTRACT The most challenging aspect identified in this study revolves around effectively managing
machine breakdowns to ensure uninterrupted production. This paper presents a real-time dynamic scheduling
model that addresses the challenges of the Flexible Job Shop Scheduling Problem (FJSSP) while considering
the occurrence of random machine breakdowns. An improved hybrid metaheuristic and rule-based multi-
strategy technique has been proposed that regenerates an optimized dynamic schedule when a random
machine is interrupted. The proposed technique establishes that the presence of real-time system updates
from IoT devices will improve scheduling decisions. The proposed methodology’s efficacy is showcased
through an extensive computational investigation encompassing 9 benchmark problems and a real-world
case study, considering three performance objectives (Robustness, Stability and Compound Effectiveness).
The results have been compared with three related techniques from literature. The proposed technique gives
better results in most cases and can be adopted in increasing the performance of Manufacturing Execution
Systems in an Industry 4.0 setup (MES 4.0).

INDEX TERMS Industry 4.0, digital transformation, manufacturing execution systems (MES), job shop
scheduling problem (JSSP), flexible job shop scheduling problem (FJSSP), dynamic job shop scheduling
problem (DJSSP), real-time rescheduling, Internet of Things (IoT), genetic algorithm (GA).

I. INTRODUCTION
This work can find its way in the ongoing drive for digital
transformation of MES through Industry 4.0. There will be
no Industry 4.0 without an effective MES with a dynamic
job shop schedule as a hub of connectivity and integration,
as MES provides real-time visibility and control on the shop
floor. Consequently, the implementation of MES has become
crucial as part of the Industry 4.0 [1]. Production Planning
and Control (PPC) stands as a fundamental element within
the MES and PPC is simply incomplete without an effective
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Job Shop Scheduling (JSS) module. This work showcases
the importance of integrating MES, PPC, JSS, and real-time
IoT data to enable efficient and agile decision-making,
optimize production processes and costs, optimize resource
allocation, enhance overall operational efficiency and achieve
the strategic objectives outlined in their production plans.

During requirements elicitation, we identified a key
challenge in industry settings: machine breakdowns dis-
rupting pre-planned production schedules, leading to shop
floor chaos. Typically, a fixed schedule is established
and implemented on the shop floor. However, when a
machine breaks down, it is very difficult to adjust the
schedule manually due to the numerous combinations and
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FIGURE 1. Generic dynamic scheduler within MES 4.0 interacting with
other components.

permutations of breakdowns that may occur. This pervasive
issue, highlighted across various industries, forms the core
focus of our paper. In our framework, we address this
challenge by ensuring that our algorithm gracefully handles
the readjustment of the schedule, regardless of the machine
or the number of breakdowns encountered. Our proposed
solution utilizes IoT devices to automatically detect and
report machine failures, prompting immediate production
schedule adjustments. By integrating this functionality into
our framework, manual reporting is eliminated, allowing
for proactive scheduling adjustments based on predefined
machine downtime thresholds. This enhancement is also
seamlessly integrated into our rough-cut estimate calculation
methodology, ensuring effective production planning despite
machine breakdowns.

The classical Job Shop Scheduling Problem (JSSP)
pertains to the arrangement of a set of jobs across multiple
machines, with each job consisting of multiple operations.
Over time, variants of the JSSP have emerged, including
the basic JSSP, the Dynamic Job Shop Scheduling Problem
(DJSSP), and the Flexible Job Shop Scheduling Problem
(FJSSP) [2]. The FJSSP introduces complexity by incorpo-
rating machine assignment as an additional decision level,
thereby making it an NP-hard problem that necessitates
challenging combinatorial optimization [2], [3], [4]. DJSSP
involves dynamically adjusting the schedule plan in case of
occurrence of a disruptive event. The goal is to identify the
most optimal sequence of operations onmachines to optimize
specific performance indicators. Different objectives can
be considered in JSSPs, including minimizing makespan,
minimizing tardiness, and maximizing throughput [5]. Over
time, rescheduling methods have shifted their focus from
traditional performance criteria to emphasize reactivity,
adaptability, and robustness. A schedule is deemed stable and
robust when there is minimal deviation between the predicted
and actual schedules in terms of time or sequence. Recent
advancements have introduced specific measures of stability
and robustness tailored to the FJSSP [1], [6], [7], [8].

The concept of real-time dynamic scheduling involves
utilizing current data to make scheduling decisions [2], [3],
[4]. Figure 1 illustrates the architecture and information flow
of a generic real-time dynamic scheduler system within an
Industry 4.0 based MES (MES 4.0). Overall, the dynamic
scheduler acts as a critical component within an Industry
4.0 MES environment, leveraging real-time information,
advanced simulation techniques, and integration with Product
Lifecycle Management (PLM) and ERP systems. In dynamic
manufacturing environments, disruptions and unforeseen
events are inevitable, requiring real-time rescheduling utiliz-
ing shop-floor information [9], [10]. Dynamic changes can
be divided into two groups: job-related factors, including job
cancellations, rush jobs, variations in job processing time,
changes in due dates or job priority; and resource-related
factors, encompassing machine breakdowns, material short-
ages, and tool unavailability [1], [2]. In the predictive-reactive
scheduling strategy for dynamic scheduling, an initial
predictive schedule is generated to guide shop floor activities
for a specific time period. Rescheduling is then triggered
by real-time events to accommodate disruptions and ensure
schedule feasibility. Traditional rescheduling approaches,
relying on manual adjustments by shop foremen based on
experience, often prove to be inefficient and error prone.
To address these challenges, computerized reactive schedule
repair tools need to be developed, leveraging real-time
data for more effective rescheduling [1]. Total rescheduling
reschedules all remaining operations with the technique
used for generating the initial base schedule with main
focus on time optimization in case of any disruption. This
disruption affects personnel assignment, resource allocation,
raw material delivery, and job processing in other facilities,
commonly known as shop floor nervousness [11]. In contrast,
repaired schedules with partial rescheduling techniques (i.e.
Rescheduling only affected operations) experience a slight
decline in quality but retain similarity to the original
schedule. Various rescheduling methods, such as Affected
Operation Rescheduling (AOR), Modified AOR (mAOR),
and Right-Shifting Rescheduling (RSR) are classified as
partial rescheduling techniques in the literature [1]. Total
rescheduling becomes necessary in cases of frequent and sig-
nificant disruptions [1], [7], [8], [11]. This research focuses
on addressing the FJSSP within the framework of Industry
4.0 manufacturing environments. The aim is to optimize the
allocation and sequence of operations on each machine, with
the goal of minimizing both the makespan and deviation from
the initial schedule. To achieve this, we propose an approach
that incorporates IoT-enabled real-time dynamic data-driven
production planning and Control. Obtaining stable and
robust properties in full rescheduling is a time-consuming
process, making it highly impractical and unfavorable in
practice. Another focus of our work was to avoid shop
floor nervousness. Therefore, we have worked on partial
rescheduling (i.e. rescheduling only affected operations). The
majority of research approaches are based on the issue of
breakdown with a single strategy, making it challenging
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to ensure both robustness and stability in performance.
Consequently, we have developed a multi-strategy technique
to address this limitation.

II. RELATED WORK
A. STATIC FLEXIBLE JOB SHOP SCHEDULING
PROBLEM (FJSSP)
The Genetic Algorithm (GA) has been widely utilized as
the primary approach for solving the FJSSP, with 54.69%
of studies adopting GA [12]. Notable contributions in the
literature include studies such as [13] and [14]. Additionally,
there have been several significant papers in the field of FJSP
that propose novel genetic algorithms. For instance, [15]
presents a genetic algorithm that integrates various strategies,
outperforming other genetic algorithms and demonstrating
comparable performance to the well-known tabu search
algorithm. In the work by Liang and Xiao [16], they introduce
an enhanced genetic algorithm that specifically targets the
minimization of the makespan. This algorithm incorporates
a novel initialization method, optimized chromosome encod-
ing, crossover, andmutation operators.Moreover, in the study
by Zhang et al. [17], an efficient genetic algorithm for the
FJSP is presented. This algorithm is designed to minimize the
makespan and incorporates Local Selection (LS) and Global
Selection (GS) mechanisms, diverse crossover and mutation
strategies, and an enhanced chromosome representation.
Finally, [18] introduces an enhanced Genetic Algorithm
designed for addressing the Distributed and FJSSP. This
algorithm extends the solution representation, employs a
greedy decoding procedure, and introduces a local search
operator.

B. REAL-TIME DYNAMIC FLEXIBLE JOB SHOP
SCHEDULING PROBLEM (DFJSSP)
The literature has extensively explored the optimization of
FJSP, particularly emphasizing real-time dynamic reschedul-
ing and accounting for random machine breakdowns.

A certain part of literature also addresses challenges
associated with integrating new jobs into existing sched-
ules [19], [20]; however, our work focuses on the scenario
where machine breakdowns necessitate schedule adjustments
without disrupting the established workflow on the shop
floor. One notable literature review by [21] examines
140 related articles and presents an overview of mathematical
models, integration frameworks, and qualitative analyses
of different approaches in the context of Industry 4.0.
Addressing machine breakdown disruptions, [22] explores
rerouting policies for affected jobs, aiming to redirect them
to alternative machines when the primary machine is unavail-
able. The authors consider resource costs, processing times,
and downstream operation completion time in their decision-
making process. Authors [23] consider predictive and reac-
tive scenarios for machine unavailability and aim to achieve
robust schedules in the presence of disruptions. Job shop
rescheduling outcomes, including rework and reconditioning,
are investigated using an event-driven scheduling method

with Petri nets [7]. The authors propose the Beam A* Search
(BAS) algorithm, which demonstrates favorable performance
with high threshold values. Moreover, [24] formulates a
mathematical model considering completion time, Lower
Bound (LB), and Absolute Deviation (AD) objectives.
They optimize the model using a dynamic multi-objective
Simulated Annealing algorithm (SSA). A novel graph-based
algorithm is presented by [25] to address scheduling-related
problems.

To optimize mean tardiness and energy efficiency,
[26] proposes a method for the multi-objective DFJSS
problem. The Hybrid Rescheduling Strategy (HRS) with
an Iterated Genetic Algorithm (IGA) and local search is
introduced by [27] for rescheduling in dynamic manufac-
turing environments. Additionally, [3] and [28] propose a
new jaya algorithm for FJJSP with machine breakdown,
effectively handling both constrained and unconstrained
optimization problems. In this study [29], authors approach
the Multi-Objective FJSSP using a decomposition approach
to simultaneously minimize makespan, total workload, and
critical workload. Furthermore, [2] presents a real-time
scheduling (RTS) model that incorporates various reschedul-
ing strategies, policies, and methods to address different
uncertainties and leverage real-time information. In the work
by Wang et al. [9], a rescheduling decision methodology
is introduced specifically for hidden disturbances in job
shops utilizing RFID technology. some authors also explored
Deep Reinforcement Learning (DRL) based solutions for
FJSSP [30], [31], [32], [33]. Using a discrete event simulation
model, this paper [34] examines multiple performance
measures to evaluate the efficacy of nine dispatching rules
in addressing a stochastic DJSSP. Reference [35] addresses
the challenge of machine breakdown in workshop production
by proposing a mathematical model for a multi-objective
DFJSSP.

The following previous studies worked as base for our
work:

1) RIGHT SHIFT (RS)
The methodology introduced by [36] is built upon the binary
branching algorithm, as originally proposed by Li et al.
(1993). Machine and job activities are illustrated using a
binary tree structure, where each node corresponds to an
operation. Within the binary tree structure, each node’s
left branch denotes the subsequent operation in the job
sequence, guided by technological limitations. The right
branch signifies the subsequent operation on the machine,
following the operation sequences from the initial schedule.
The core principle of the RS is to handle disruptions by
delaying the starting times of operations. This delay is kept
to a minimum, ensuring that technological constraints are still
satisfiedwhile preserving the original sequence of operations.

2) ROUTE CHANGING (RC)
In case of a machine failure, this technique [37] redi-
rect affected jobs to alternative machines to maintain job
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processing. Each job operation has a primary machine and
multiple alternatives. During a primary machine breakdown,
jobs are rerouted to available alternative machines within the
existing subset. Careful selection of the alternative machine
is crucial for optimal rerouting. Therefore, it uses a cost
calculation to choose the alternative machine with the lowest
cost. The cost considers processing times, and expected
completion time of downstream operations.

3) IMPROVED HYBRID ALGORITHM (IHA)
Rather than relying solely on right-shift adjustments, this [38]
approach explores two additional options within the frame-
work of route changes. The objective is to identify the
option that results in the most efficient cost reduction,
particularly concerning the total makespan of production
schedules. A notable improvement in rescheduling strategies
concerns the handling of the final operation affected by
machine breakdowns. The final operation is strategically
placed after the last task on an appropriate machine, ensuring
minimal disruption and preserving sequencing integrity. This
innovation proves particularly valuable when dealing with
uncertain repair times, offering a structured approach to
sequence adjustments.

4) SHIFTED GAP REDUCTION (SGR)
In real-world situations, the occurrence of intervals, often
termed as machine idle time, between consecutive tasks
processed on a machine is not unusual. These gaps can
emerge due to precedence constraints or the generation of
suboptimal solutions during implementation, as highlighted
by Hasan [39], [40]. In tackling the latter scenarios, there
exists the potential to improve solutions by strategically
incorporating appropriate tasks into these gaps. Within the
SGR approach, for a given candidate solution, any gaps
between consecutive tasks on a machine are identified. If the
gap is large enough to accommodate the operation of a job
without violating precedence constraints, a job from the right
of the gap can be placed in it. Even when the gap is not
extensively large, there remains the possibility of assigning
the job within a specified operation time tolerance limit,
provided that such placement contributes to the enhancement
of the overall performance score. However, in this scenario,
a right shift of other jobs is necessary to accommodate the
inserted task.

C. RESEARCH GAP
During requirements elicitation, we discovered that the most
challenging aspect on the shop floor is the breakdown of
machines, especially in complex manufacturing setups where
a job must pass through multiple machines for completion.
This situation often leads to chaos, yet the current literature
fails to adequately address this real-world scenario. Despite
the longstanding popularity of DJSSPs, no algorithm can
guarantee optimal solutions for all test problems, particularly
for larger instances. Therefore, there is a need to analyze the

FIGURE 2. Master Production Schedule (MPS) generation process.

difficulties associated with DFJSSPs and devise improved
algorithms capable of effectively solving them. Moreover,
existing studies on the DFJSSP reveal certain areas where
further research is needed, particularly concerning machine
breakdowns:

• A multi-strategy combining RS, RC, and SGR has not
been developed and experimented with.

• Most of the researchers performed experimentation on
benchmark datasets for industrial processes available
online. These datasets are based on hypothetical pro-
cesses generated with randomization for jobs, opera-
tions, machines, and their expected processing times.
Real industrial datasets have not been experimentedwith
mostly.

• No one has integrated the DFJSSP techniques with an
IoT-enabled Shop Floor Digitization Framework to deal
with Dynamic real-time events more effectively.

III. PROPOSED MODEL FOR THE MASTER PRODUCTION
SCHEDULE (MPS)
The MPS serves as a pivotal component in the manufacturing
process, offering a high-level production plan that dictates
both the ‘‘what’’ and ‘‘when’’ of product manufacturing to
fulfill customer demand, as depicted in Figure 2. MPS relies
on a range of critical inputs to effectively plan and coordinate
production activities. These include customer demand, which
encompasses market forecasts and actual orders, ensuring
alignment with market needs. Inventory levels and work
in progress (WIP) are essential factors, as they dictate the
availability of components and provide visibility into the
production pipeline. Lead times are critical for coordinating
manufacturing timelines and ensuring materials are on hand
when needed.

Moreover, incorporating market forecasts guides proactive
planning, while understanding production costs informs
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FIGURE 3. Two phase IoT-enabled real-time dynamic scheduling framework for FJSS.

cost-effective strategies. Material Requirements Planning
(MRP) focuses on ensuring that the right materials are
available at the right time, while Capacity Requirements
Planning (CRP) concentrates on whether the production
capacity can handle the planned workload.

Bill of Materials (BOM) serve as a blueprint for pro-
duction, guiding procurement, assembly, and cost estimation
processes by specifying the structure and composition of
products. Beyond its role in outlining production require-
ments, such as quantities and deadlines, the MPS plays a
crucial function of connecting planning (MPS) and execution
(shop floor) levels. Acting as the primary input to the MES,
it channels essential production information to bridge this
critical gap. The MES, in turn, transforms this data into
actionable tasks for the shop floor, generating job shop
schedules. Operating at the granular level of workshops
and machines, job shop schedules specify when and how
individual tasks or jobs are executed, aligning closely with
the production requirements defined by the MPS.

Our research delves into job shop scheduling within
manufacturing operations but extends beyond individual
workshop-level optimization. We aim to enhance the MPS,
recognizing its pivotal role in coordinating production.
By integrating real-time data, innovative scheduling strate-
gies, and advanced algorithms, our work improves MPS
accuracy, adaptability, and responsiveness. Our research
demonstrates the inherent collaboration between job shop
scheduling and the broader MPS, emphasizing how

enhancements at the workshop level impact the larger
production planning and control framework.WithinMPS, the
MES continually monitors production progress, collecting
real-time data on performance. This valuable data is then fed
back into the MPS, establishing a feedback loop that enables
the adjustment of the master production plan based on real-
world conditions, such as unexpected machine breakdowns
or resource shortages. The JSS is run in two stages. First, it’s
executed to provide the MPS with an estimate of production
time, excluding any considerations for Internet of Things
(IoT) data. Then, in the second run, it’s executed with
smarter machines and IoT integration, allowing for real-time
detection of machine breakdowns and resource optimization.

IV. PROPOSED IOT-ENABLED REAL-TIME DFJSS
FRAMEWORK
The proposed framework as shown in Figure 3 uses a
two-phase methodology that is based on the predictive-
reactive strategy of JSSP: during phase 1 an initial schedule
is generated with the help of GA as a solution to a basic
FJSSP whereas the second phase performs event-driven
rescheduling based on IoT feedback regarding machine
breakdown given by the Smart Sensing Node (SSN) for
Dynamic FJSSP. Phase 2 has two modes of execution
including an offline mode and an online mode. The first
mode is the offline mode where the SJSS executes as per
initial assignments until any disruptive event occurs. As soon
as a machine breakdown information is reported by the
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TABLE 1. Comparison of Phases 1 and Phase 2.

Smart Sensing Network Server (SSNS), the online mode
is triggered. During online mode the complete machine
breakdown event information is taken from the SSNS and
updated schedule is generated by using RCSGR technique.
The updated schedule is then considered as baseline schedule
for future processing and again assigned to the machines
through the SSNS. This cycle keeps on continuing until
the completion of every job. A summary of strategies,
policies and methods used for both the phases is given
in Table 1.

A. PHASE 1: INITIAL BASELINE SCHEDULE GENERATION
(PRE-SCHEDULING STRATEGY)
In the context of pre-scheduling, the underlying assumption
is that all machines are currently operational, and the
likelihood of them encountering breakdowns is assumed
to be zero. GA is used to generate an initial schedule
based on the input of machines, jobs, operations, start time
and end time. Selection, mutation, and crossover are basic
GA operators and have obvious effects on the obtained
solutions. We have applied various combinations of each
of the operator types for experimentation and parameter
selection and selected an optimal combination that produces
best results in terms of minimum makespan in our ablation
study as described in VI-A. The experimentation shows
that by using tournament selection, uniform crossover and
simple mutation optimal solution is achieved with minimum
makespan.

The pre-scheduling strategy used in [37] is based on adding
delays in the baseline schedule to accommodate the schedule
slips, which is not an optimized solution. We need to generate
stable and robust updated schedule of an optimized solution
with minimum makespan. Therefore, the pre-scheduling
strategy used in our framework does not add any delays in
the baseline schedule. Figure 4 is the screen print from our
SJSS tool which is based on our proposed GA model. The
tool is very flexible and useful for admin at each shop floor
as it has multiple views for keeping track of progress for each
operation.

FIGURE 4. Panel PC Interface of SJSS for MES 4.0.

FIGURE 5. IoT-enabled shop floor digitization framework.

B. PROPOSED IOT-ENABLED SHOP FLOOR DIGITIZATION
FRAMEWORK
As soon as an initial schedule is executed it is subject to
several disruptive events immediately when we consider the
actual shop floor scenarios. The main contribution of our
work is to answer the question of ‘‘How do we get to know
that the schedule has slipped?’’. For this we have proposed a
Shop Floor Digitization Framework powered by IoTs shown
in Figure 5.

This shop floor digitization framework acts as a smart
sensing network deployed in shop floors for real-time
monitoring and scheduling. The shop floors consist of
multiple machines, each equipped with a current sensor
that continuously provides feedback on its operation. This
feedback is transmitted to SSN present at each shop floor.
Additionally, panel PCs are installed, serving as visual
interfaces for displaying schedules and current profiles of the
machines. All SSNs and panel PCs are interconnected with a
central SSNS, enabling bidirectional communication and data
exchange. This scenario demonstrates the implementation of
true Industry 4.0 based digitization with machine-to-machine
communication.

In this IoT based Digitization setup, an initial schedule is
generated and distributed to each machine. The IoT devices
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deployed on the machines constantly sense and report their
status back to the server. If the server detects a machine
malfunction or breakdown, it reschedules the affected oper-
ations and reassigns them to alternative machines, ensuring
the continuity of the production process.

The integration of IoT technologies presents a significant
advancement in enhancing the stability and robustness of
the rescheduling process. By leveraging real-time data from
IoT devices deployed across the manufacturing environ-
ment, our framework can dynamically adapt to changing
conditions and disruptions, such as machine breakdowns.
This real-time data enables proactive decision-making and
allows for timely adjustments to the production schedule,
minimizing the impact of disruptions on overall productivity
and performance. Once a machine experiences a breakdown,
sometimes we have to cause a lot of disturbance to already
planned processes while optimizing the makespan. If the
more important objective is not to disturb other operations on
other machines, then we can give more priority to stability.
It will ensure that with minimum disturbance to already
planned operations, we can still optimize the makespan. The
predictive capabilities of IoT sensors enable early detection
of potential issues, allowing for preventive maintenance
measures to be implemented before critical failures occur.
As a result, the integration of IoT technologies not only
improves the responsiveness and agility of the rescheduling
process but also directly impacts the improvement of
robustness and stability of manufacturing operations.

C. PHASE 2: EVENT-DRIVEN RESCHEDULING BASED ON
IOT FEEDBACK
Phase 2 works on a DFJSSP which is subject to the following
assumptions:

1) Each machine is capable of processing a single
operation during any specific interval.

2) Tasks for each job must adhere to a predetermined
order.

3) Each operation is exclusively processed on a single
machine.

4) Technological constraints and processing times are
predefined and constant.

5) Each machine has adequate capacity to process all
assigned operations.

6) The setup time and transport time for any operation are
fixed, regardless of the schedule, and are integrated into
the respective processing duration.

We have designed a new rescheduling methodology which
combines three strategies and responds to real-time dynamic
feedback about disruptions from IoT devices. In the context
of our approach tasks that are completed prior to a breakdown
event are categorized as ‘‘completed’’ and do not require
consideration during reactive scheduling or rescheduling.
Tasks necessitating relocation owing to an interruption are
classified as ‘‘affected.’’ The determination of affected tasks
is based on the inter-task precedence relationships. If the

TABLE 2. Notations for proposed RCSGR technique.

reassignment of a task, prompted by a breakdown, has
no effect on its subsequent task, the following task is
not classified as affected. This is done with the help of
binary tree used in Affected Operation Rescheduling (AOR)
[36]. Reactive schedules comprise the affected tasks, which
commence from an adjusted starting time specific to each
machine. These starting times are computed considering
the completion time of the tasks that have been executed.
RS combined with RC is applied to reschedule those affected
operations based on a defined cost of rescheduling. At the end
SGR is applied finally to make the solution more robust and
stable.

1) PROBLEM DESCRIPTION
Two performance measures are considered in our proposed
methodology, namely Robustness Measure (RM) and Sta-
bility Measure (SM), and these measures are derived from
those documented in existing literature [36], [37], [40].
Robustness Measure (RM) basically represents the aver-
age difference between pre-scheduling and post-scheduling
makespan whereas Stability Measure (SM) is the average
deviation of sequence in pre-schedule and post-schedule. It is
not possible to obtain high robustness and high stability at
the same time in most of the cases therefore we have also
analyzed compound effectiveness (Z) which includes both
robustness and stability measures.

RM =

(
(MS_R) − (MS_P)

MS_P

)
× 100 (1)

SM =

∑n′

i=1
∑q′

j=1 |COPij − CORij |∑n
i=1Oi

(2)

VOLUME 12, 2024 49659



A. Tariq et al.: IoT-Enabled Real-Time Dynamic Scheduler

FIGURE 6. Breakdown event generation using different probability
distributions.

Z = (γ ∗ RM ) + (1 − γ )SM (3)

where,
MS_R = Real Makespan
MS_P = pre-scheduling Makespan
COij,p = predicted completion time of operation j of job i,
in pre-scheduling
COij,R = realized completion time of operation j of job i
γ = weightiness that belongs to [0, 1]
The variables involved in proposed RCSGR technique are

defined in Table 2.

2) MACHINE BREAKDOWN MODEL
Due to the reason that no benchmark dataset for breakdown
machines and the duration of breakdown is available for
experimentation, therefore we used slightly changed version
of the machine breakdown model proposed by [40] which
is based on random probability distributions. A breakdown
scenario is denoted as 3(Mk , tkBD, rtj,k ), indicating that
machine Mk requires rtj,k units of time to recover at time
tkBD. Each breakdown instance is generated randomly using
appropriate probability distributions as shown in Figure 6.
The selection of the breakdown machine is determined using

Algorithm 1Route Change ShiftedGapReduction (RCSGR)
Pseudocode
Step 1: FindBreakdownInterval(Mk , tkBD, rtj,k )
Step 2: if interruptedOperationExists() then

AO[1] = getInterruptedOperation()
else

if remainingOperationOnMachineExists() AND Sij,k <
rtj,k then

AO[1] = getFirstRemainingOperation()
else

TerminateAlgorithm()
end if

end if

Step 3: if (tkBD + rtj,k + tij,k ) ≤ min(Si(j+1),k ′ , SSUC,k ) then
RightShiftOperation(AO[1],tkBD + rtj,k )

else
AO = determineAffectedOperations(AO[1])

end if
Step 4: InitializeVariables(h,g,AO[],A[])
Step 5: SetCurrentOperation(AO[1])

SetMachineStartOfCurrentOperation(rtj,k )
Increment g

Step 6: alternativeMachines = getAlternativeMachines(Oij)
Step 7: foreach machine Mn in alternativeMachines do

ComputeCost(Mn)
SelectMachineWithMinimumCost()
if Mn is the breakdown machine then

RightShiftOperation()
else

if max(tkBD,EPre,k ′ ) + tij,k ′ ≤ min(Si(j+1),k ′′ , SSUC,k ′ )
then

InsertOperationWithoutRightShifting(Mn)
else

InsertOperationWithRightShifting(Mn)
end if

end if
end
Step 8: if currentJobMatchesAffectedOperation() then

ResetAttributesOfAffectedOperation(A[v])
Goto Step 11

end if
Step 9: SetAffectedOperation(A[h!])

Increment h
Step 10: UpdateMakespanAndDeviation()
Step 11: noj = getNextOperationOfJob()
Step 12: if nojExists() and sij,k of noj < neij,k of current
operation then

AO[g] = noj
SetJsOfAO[g] = neij,k of current operation
Increment g

end if
Step 13: nom = getNextOperationOnMachine()
Step 14: if nomExists() and sij,k of nom < neij,k of current
operation then

AO[g] = nom
SetMsOfAO[g] = neij,k of current operation
Increment g

end if
Step 15: RemoveCurrentOperationFromAOAndAdd
NewMembers(noj, nom)
Step 16: if AO = 8 then

Goto Step 17
else

SetCurrentOperationFromAO()
GotoStep 9

end if
Step 17: CalculateDifferenceFromPreviousOperation()

a uniform distribution, a Gaussian distribution is used for
breakdown time, and an exponential distribution for repair
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Step 18: if difference ≤ 0 then
OperationCannotBeShiftedBack()

else
intersectingOperations = getIntersectingOperations()
foreach intersectingOperation in intersectingOperations
do

Gijk = getGapBetweenOperations(Oij,
intersectingOperation)
if gapSizeIsSufficient(Gijk, tijk) then

ShiftCurrentOperationToGap(Gijk)
else

if gapSizeIsInsufficient(Gij,k , tij,k ) then
if Gij,k ≥ (1 − ψ)tij,k then

ShiftCurrentOperationToGap(Gij,k )
RightShiftIntersectingOperations(Gij,k )

else
OperationCannotBeShifted()

end if
end if

end if
end foreach

end if
Step 19: OutputFinalSchedule()

TABLE 3. Example process dataset ( [24].

time. These distributions effectively simulate breakdown sce-
narios that closely resemble real-world situations commonly
observed in practical breakdown events.

3) RCSGR ALGORITHM PSEUDOCODE
Initially, the algorithm determines the interval of time during
which a breakdown occurs. Subsequently, a binary branching
approach is employed to pinpoint affected operations. For
each affected operation, a route change algorithm is invoked
for rescheduling. Following this, the shifted gap reduction
technique is applied to detect and eliminate any existing gaps,
further optimizing the solution.

V. DEMONSTRATION OF THE PROPOSED
METHODOLOGY: EXAMPLE PROCESS
By showcasing the application of proposed methodology on
a specific process, we aim to illustrate the practical imple-
mentation and effectiveness of the proposed methodology.

FIGURE 7. Initial baseline schedule generated with GA.

FIGURE 8. Breakdown event generation model.

While larger datasets often provide a broader perspective,
we wanted to use the actual industrial dataset that we
worked on for the purpose of demonstrating the proposed
technique, but that data is quite big. Working with a smaller
dataset allows for precise explanations and descriptions of
the technique’s application steps, enhancing the reader’s
understanding of its implementation. Therefore, in this
demonstration we intentionally opted for a smaller dataset
from a previous study conducted by [24]. This data set gives
patrial flexibility as shown in Table 3.

As a first step an initial baseline schedule was generated
with the help of SJSS tool which is based onGA. The baseline
schedule is shown in Figure 7 with a makespan of 22.

In accordance with the methodology detailed in
Section IV-C2, we proceeded to generate a set of 100 distinct
breakdown event scenarios utilizing our machine breakdown
model. Each machine in our study possesses its unique
Mean Time To Failure (MTTF) and is characterized by
a range of values expressed through Standard Deviation.
These statistical parameters are employed to construct
Gaussian probability distributions, which, in turn, serve as
the basis for simulating random breakdown events within
our proposed breakdown model framework. The ensuing
visual representation, as depicted in Figure 8, showcases the
specificMTTF and standard deviation values assumed for the
illustrative example currently under examination.
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FIGURE 9. Gaussian distribution for the example under discussion.

FIGURE 10. Schedule after applying right shift.

FIGURE 11. Schedule after applying route change.

A Gaussian fit of values generated using the breakdown
simulation model for the initial schedule generated from the
Pre-scheduling phase is illustrated for this particular example
in Figure 9.

We then proceeded to analyze a stochastic breakdown
event, specifically focusing on machine 5 as the selected
breakdown machine. The breakdown duration was deter-
mined to be 10 time units, with an anticipated repair time
of 10 time units. Consequently, machine 5 was rendered
unavailable for utilization during the interval from time unit
5 to time unit 15. If we simply right shift the operations
affected by given machine breakdown scenario the makespan
will increase drastically as a result an increase in the
robustness, stability and compound effectiveness. Gantt chart
is shown in Figure 10 with a makespan of 32.

A better approach is to reroute the affected operations on
alternative machines if the alternative machine is free. The
choice of machine from a subset of eligible machines is made
with the help of a cost function in eq. 3. Figure 11 shows the
resulting schedule after applying route changing technique
and the makespan is minimized to 22.

Then, we applied the RCSGR by integrating SGR with
route changing which further optimizes the schedule and
reduced the makespan to 20 as shown in Figure 12.

FIGURE 12. Schedule after applying RCSGR.

TABLE 4. Results comparison.

Table 4 shows the comparison results after applying RSS,
RC and the proposed technique on above example. It can be
clearly seen that RCSGR gives the best value of Makespan,
Robustness, Stability and Compound Effectiveness. These
results demonstrate the practicality and effectiveness of the
proposed methodology in enhancing the performance of real-
world processes.

VI. ABLATION STUDY
In our research, a comprehensive experimental approach was
adopted to enhance job shop scheduling. Firstly, Experiments
were conducted to determine the optimal combination of
GA parameters employed in the proposed SJSS module.
Secondly, we conducted experiments to evaluate our DFJJS
module, which incorporates multi-strategy techniques. This
module was rigorously compared with other state-of-the-art
techniques from the literature.

A. SJSS EXPERIMENTAL SETUP
First of all, we designed the experimentation setup for GA
based model. For this we set the Cross Over Rate and
Mutation Rate equal to 1. The Population Size was 24. Five
number of runs were executed with Generation Size 75000.
For conducting this experimentation, we assigned a code to
each experiment. These short codes are given in the Table 5.

For example, an experiment was performed with tourna-
ment selection, simple crossover and simple mutation, the
experiment name will be T_SC_SM. Our model designed
for this ablation study produces the result in a CSV file and
later the CSV file is used to generate the graph representing
makespan for each run and generations up to 75000. Figure 13
shows the result of minimum makespan calculated with each
experiment. Experiment no 2 gave the minimum makespan
value of 1165 where tournament selection, uniform crossover
and simple mutation was used shown in Figure 14.

B. DFJJS MODULE EXPERIMENTAL SETUP
For the DFJSS module we have performed extensive
experimentation using 10 examples of different sizes and
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TABLE 5. GA parameter types and codes for experimentation.

FIGURE 13. Combined results of all experiments.

FIGURE 14. Experiment with best makespan value.

dynamics. We have considered the dataset from two cate-
gories. Examples of different sizes from FJSSP related other
research articles considered as benchmarks for FJSSP and
actual dataset from a case study manufacturing organization.
The details of data used to perform the experimentation are
given in Table 6.

TABLE 6. Dataset dynamics.

For each example dataset, preschedules are generated by
a GA-based model in phase 1. The size of the population in
GA is set to be 8, and the number of generations is 100,000.
The crossover probability and mutation rate both were set to
be 1.0.We generated 100 different single breakdown scenario
events for each example mentioned in the Tabel 6. Thus, there
are a total of 10 × 100 = 1000 test cases.

The strategies proposed in this paper are compared with
RS, RC and IHA proposed by [7], [36], and [37] briefly
described in II. The RS approach is built upon pre-scheduling
techniques that do not involve the insertion of idle time.
On the other hand, the RC and IHA relies on pre-scheduling
methods that involve the insertion of idle time. We are
focusing on the main objective of gap reduction; therefore,
the proposed technique is rooted in pre-scheduling methods
that do not involve the insertion of idle time. For calculating
the compound effectiveness, γ is set to be 0.6 (value adopted
from [37]). The essential requirement for applying SGR
can be expressed as g(time) ≥ (1 − ψ)T (n,m), where
ψ represents the tolerance limit, ranging from 0 to 1.
Therefore, we have used the value 0.2 as the tolerance level
declared as most effective value by [40]. All experiments
are implemented by Visual Studio 2020 with C# console
application and run on an Intel (R) Core (TM) i7-6500U
CPU at 2.50 GHz (4 CPUs), 8GB RAM computer with
Windows 10.

Table 7 presents data on Average Makespan, Average
Robustness Measure (ARM), Average Stability Measure
(ASM), and Average Compound Effectiveness for RS, RC,
IHA and RCSGR techniques after considering 100 different
breakdown scenarios. Lower values in these parameters
indicate better performance. Table 8 provides an average
improvement percentage of performance parameters for
RCSGR when compared to the other three policies, offering
a comparative analysis of the obtained results. Negative
values indicate improvement, while positive values suggest a
degradation in the measured values. A value of zero indicates
no change in performance.

The comparison depicted in Table 7 consistently demon-
strates that the RCSGR strategy exhibits superior robustness
compared to RSS, RC and IHA across all cases, indicating
its effectiveness in improving robustness. In the majority
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TABLE 7. Average performance measures.

TABLE 8. Average improvement measures.

of cases, the RCSGR policy also showcases a notable
improvement in stability when compared to RSS. However,
the enhancement in stability is relatively less pronounced
in comparison to RC and IHA. Notably, in Example 2 and
Example 3, the stability achieved with the RCSGR policy
experiences a degradation when compared to RC and IHA.
Specifically, there is a 39% and 7% degradation in stability
in Example 2 and Example 3, respectively. This implies that
RCSGR does not demonstrate significant improvement over
RC and IHA in terms of stability. The reason behind this lies
in the fact that in certain cases, robustness and stability cannot
be simultaneously optimized. Emphasizing robustness may
result in compromised stability, and vice versa. Therefore,
the compound effect of both robustness and stability deserves
careful consideration in the decision-making process.

VII. CONCLUSION AND FUTURE RECOMMENDATIONS
Our approach adopts a two-stage methodology. During
the initial stage, the primary objective of makespan is
optimized under deterministic conditions, while in the
second stage, the bi-objective function is optimized, taking
into account expected machine breakdowns. We employ a
predictive-reactive scheduling policy that generates an initial
schedule using a Genetic Algorithm (GA), and rescheduling
is performed using a multi-strategy technique called RCSGR.
This technique integrates the Right Shift (RS), Route
Changing (RC), and Shifted Gap Reduction (SGR) methods,
providing a trade-off between performance deviation and
schedule stability.

The main focus of our work is to mitigate disruptions
and ensure accurate and timely rescheduling by integrating
an IoT-enabled shop floor digitization framework with the
dynamic scheduler which uses real-time delay feedback from
Smart Sense Nodes (SSN). Experiments demonstrate that

integrating multiple strategies yields better performance than
using a single strategy. Given the comparable performance of
our approach to RS, RC and IHA, we believe that integrating
the SGR policy with route changing and right-shift policies
enhances the robustness and stability of rescheduling.

The proposed framework can be expanded to address addi-
tional disruptions, including dynamic job arrivals, alterations
in due dates, and the inclusion or removal of machines.
Additional performance measures can also be explored to
evaluate the proposed methodology, such as throughput,
resource utilization, or energy efficiency. In future other
modules of MES can also be considered as use case and
explored for potential research gaps in addition to the
production planning and monitoring module.
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